
CPSC-313 Introduction to Computer Systems Introduction

1

Introduction to OSs

• What is an Operating System?

• Architectural Support for Operating Systems

• System Calls

• Basic Organization of an Operating System

Introduction to OSs

• What is an Operating System?

• Architectural Support for Operating Systems

• System Calls

• Basic Organization of an Operating System

CPSC-313 Introduction to Computer Systems Introduction

2

What is an operating system?

• What an operating system is not:

– An o.s. is not a language or a compiler

– An o.s. is not a command interpreter / window system

– An o.s. is not a library of commands

– An o.s. is not a set of utilities

A Short Historical Tour

• First Generation Computer Systems (1949-1956):

– Single user: writes program, operates computer
through console or card reader / printer

– Absolute machine language

– I/O devices

– Development of libraries; device drivers
– Compilers, linkers, loaders
– Relocatable code

CPSC-313 Introduction to Computer Systems Introduction

3

Programming Early Machines

Wiring the ENIAC with a new program
(U.S. Army photo, from archives of the ARL Technical Library)

Second-Generation Computers (1956-1963)

– Problems: scheduling, setup time
– Automation of Load/Translate/Load/Execute

• Batch systems
• Monitor programs

• Job Control Language
• Advent of operators: computers as input/output box

– Problem: Resource management and I/O still under control of
programmer
• Memory protection
• Timers
• Privileged instructions

Monitor

device drivers
job sequencer / loader

control card interpreter

user program area

CPSC-313 Introduction to Computer Systems Introduction

4

Example: IBM Punch Card System

Card Punch

Card Verifier

Card Sorter

(Computer Museum of America)

$FTN

$JOB

$END

... Data ...

$RUN

$LOAD

...

... Program ...

$FTN

Batching Program Execution

$JOB

Jo
b

CPSC-313 Introduction to Computer Systems Introduction

5

Overlapping CPU and I/O Operations

card reader CPU line printer

card readers

CPU

line printers

card reader CPU line printer

disk

Traditional Batch Operation:

Off-Line Processing:

Spooling; I/O Channels:

Off-Line vs. Pure Batch

• off-line (single set of card reader/printer)

card
reader
CPU

printer

CPU

tape reader

tape reader

card reader

printer

rewind setup

rewindsetup

• batch

CPSC-313 Introduction to Computer Systems Introduction

6

Off-Line vs. Pure Batch (II)

• off-line (multiple of card readers/printers)

card
reader
CPU

printer

• batch

CPU

tape reader

tape reader

card reader

printer

Third-Generation Computer Systems (1964-1975)

– Problem with batching: one-job-at-a-time

– Solution: Multiprogramming
– Job pools: have several programs ready to execute

– Keep several programs in memory

– New issues:
– Job scheduling

– Memory management

– Protection

CPU

CPU

I/O

I/O

sequential:

better:

Job1
Job2

Job3

Monitor Job1 Job2 JobN

CPSC-313 Introduction to Computer Systems Introduction

7

Time Sharing (mid 1960s on)

• OS interleaves execution of multiple user programs with time
quantum
– CTSS (1961): time quantum 0.2 sec

• User returns to own the machine

• New aspects and issues:
– On-line file systems
– resource protection
– virtual memory
– sophisticated process scheduling

• Advent of systematic techniques for designing and analyzing OSs.

The Recent Past

• Personal computers and Computing as Utility
– History repeats itself

• Parallel systems
– Resource management
– Fault tolerance

• Real-Time Systems
• Distributed Systems

– Communication
– Resource sharing
– Network operating systems
– Distributed operating systems

• Secure Systems

CPSC-313 Introduction to Computer Systems Introduction

8

The Future?

• The “Invisible Computer”

• Computing-in-the-ultra-small

• Speed vs. Power vs. Heat

• Breaking up the layered design

What, then, is an Operating System?

• Controls and coordinates the use of system resources.

• Primary goal: Provide a convenient environment for a user to access
the available resources (CPU, memory, I/O)
– Provide appropriate abstractions (files, processes, ...)
– “virtual machine”

• Secondary goal: Efficient operation of the computer system.

• Resource Management
– Transforming: Create virtual substitutes that are easier to use.
– Multiplexing: Create the illusion of multiple resources from a

single resource
– Scheduling: “Who gets the resource when?”

CPSC-313 Introduction to Computer Systems Introduction

9

Resources

OSCPU Memory

I/O Controllers

Disks and other Devices

Timers / Clocks

Power / Heat

Locks

…

The OS as Servant to Two Masters

OS

Devices Clocks&Timers Locks Memory Heat&Power I/O Controllers CPUs

Performance

Power-Effectiveness

Plug&Play Security ConveniencePredictability

Fault-Tolerance …..

CPSC-313 Introduction to Computer Systems Introduction

10

Introduction to OSs

• What is an Operating System?

• Architectural Support for Operating Systems

• System Calls

• Basic Organization of an Operating System

Architectural Support for OS’s

• Dealing with Asynchronous Events: Exceptions, Interrupts
– Modern OS’s are interrupt-driven (some still are not!).
– Simple interrupt handling vs. exception handling MIPS-style.

• Hardware Protection
– Privilege Levels (e.g. user/kernel/supervisor, etc.)
– Priviledged instructions: typically CPU control instructions
– I/O Protection
– Memory Protection

• Support for Address Spaces

• Timers

CPSC-313 Introduction to Computer Systems Introduction

11

CPU

IO Device

keyboard

process
executing

servicing
interrupt

busy

idle

idle

pressed

Modern OS’s are Interrupt-Driven

Interrupts / Exceptions

• When an interrupt occurs, CPU stops, saves state, typically changes into
supervisor mode, and immediately jumps to predefined location.

• Appropriate interrupt service routine is found through the interrupt
vector.

• Return-from-interrupt automatically restores state.

• Interrupts/Exceptions can be invoked by asynchronous events (I/O
devices, timers, various errors) or can be software-generated (system
calls).

xxxx

interrupt
service
routine

interrupt xy xy

xxxx

0000

interrupt vector area

CPSC-313 Introduction to Computer Systems Introduction

12

Exceptions, MIPS-Style

• MIPS CPU deals with exceptions.
– Interrupts are just a special case of exceptions.

• The MIPS Architecture has no interrupt-vector table!
– All exceptions trigger a jump to the same location, and de-

multiplexing happens in the exception handler, after looking up
the reason for the exception in the CAUSE register.

exception
handler

specific
service
routine

exception

MIPS Exception Handler (low-level)

xcptlow_handler

set up exception frame
on stack

save enough registers
to get by

save rest of registers

call C exception handler

restore registers

return from exception

CPSC-313 Introduction to Computer Systems Introduction

13

Hardware Protection

• Originally: User owned the machine, no monitor. No protection
necessary.

• Resident monitor, resource sharing: One program can adversely
affect the execution of others.

• Examples
– halt and other instructions
– modify data or code in other programs or monitor itself
– access/modify data on storage devices
– refuse to relinquish processor

• Benign (bug) vs. malicious (virus)

• Dual-mode operation
– user mode vs. supervisor mode
– e.g. halt instruction is privileged.

• I/O Protection
– define all I/O operations to be privileged

• Memory Protection
– protect interrupt vector, interrupt service routines
– determine legal address ranges

CPU >= < memory

no no

trap to operating system!

base base + limit

Hardware Protection (2)

CPSC-313 Introduction to Computer Systems Introduction

14

• Timers can be set, and a trap occurs when the timer expires.
(And OS acquires control over the CPU.)

• Other uses of timers:
– time sharing
– time-of-day

Timers

Introduction to OSs

• What is an Operating System?

• Architectural Support for Operating Systems

• System Calls

• Basic Organization of an Operating System

CPSC-313 Introduction to Computer Systems Introduction

15

External Structure of an OS

The outsider’s view of the OS.

kernel

device drivers

hardware

system call
interface

applications programs/
processes

system call

Example: vanilla copy:

int copy(char * fname1, *fname2) {

 FILE *f, *g;

 char c;

 f = fopen(fname1, “r”);

 g = fopen(fname2, “w”);

 while (read(f, &c, 1) > 0)

 write(g, c, 1);

 fclose(f);

 fclose(g);

}

System Calls

Provide the interface between a process and the OS.

CPSC-313 Introduction to Computer Systems Introduction

16

System Call Implementation: Linux on x86

• Example: _syscall(int, setuid, uid_t, uid)
• expands to:

_setuid:

 subl $4,%exp

 pushl %ebx

 movzwl 12(%esp),%eax

 movl %eax,4(%esp)

 movl $23,%eax <<<---- System Call number (setuid = 23)

 movl 4(%esp),%ebx

 int $0x80 <<<---- call transfer to kernel entry point _system_call()

 movl %eax,%edx

 testl %edx,%edx

 jge L2

 negl %edx

 movl %edx,_errno

 movl $-1,%eax

 popl %ebx

 addl $4,%esp

retL2:

 movl %edx,%eax

 popl %ebx

 addl $4,%esp

 ret

Why Interrupts?

Reason 1: Can load user program into memory without
knowing exact address of system procedures

Reason 2: Separation of address space, including stacks:
user stack and kernel stack.

Reason 3: Automatic change to supervisor mode.

Reason 4: Can control access to kernel by masking
interrupts.

CPSC-313 Introduction to Computer Systems Introduction

17

Reason2: Buffer Overrun Attacks (Silberschatz et al)

#include <stdio.h>

#define BUFFER SIZE 256

int main(int argc, char *argv[])

{

char buffer[BUFFER SIZE];

if (argc < 2)

return -1;

else {

strcpy(buffer,argv[1]);

return 0;

}

}

#include <stdio.h>

int main(int argc, char *argv[])

{

execvp(‘‘\bin\sh’’,‘‘\bin \sh’’, NULL);

return 0;

}

[Example and illustrations from Silberschatz et al. “Operating Systems Concepts” Ch. 15]

Stack Separation sufficient?

• Buffer overruns in kernel code?

• Device drivers?

CPSC-313 Introduction to Computer Systems Introduction

18

Reason 4: Mutual Exclusion in Kernel

user process 1

system call
user space

kernel

1

trap

2 user process 2 3 4

process 1 executing in kernel
interrupts are masked

process 2 can not enter
kernel because of
masked interrupts

rti

unmask interrupts
and return

Introduction to OSs

• What is an Operating System?

• Architectural Support for Operating Systems

• System Calls

• Basic Organization of an Operating System

CPSC-313 Introduction to Computer Systems Introduction

19

External Structure of an OS

The outsider’s view of the OS.

kernel

device drivers

hardware

system call
interface

applications programs/
processes

system call

Internal Structure: Layered Services

The insider’s view of the OS.
Example: XINU [Comer 1984]

•hardware

•process coordinator
•process manager
•memory manager

•interprocess communication
•real-time clock manager
•device manager and device drivers
•intermachine network communication
•file system
•user programs

CPSC-313 Introduction to Computer Systems Introduction

20

Internal Structure: µ-Kernels
• Layered Kernels vs. Microkernels

hardware

process management

virtual memory

I/O and device management

IPC

file system

user user...

kernel

user

hardware

virtual m
em

ory

process server

fi
le server

device drivers

user process

kernel

user

m-kernel

Kernel has only core operating system
functions (memory management, IPC,
I/O, interrupts)
Other functions run in server
processes in user space.

Hierarchical decomposition.
Interaction only between adjacent
layers.

Operations in a µ-Kernel

• Non-kernel components of the OS are implemented as server processes.
• Communication between user and servers using messages through kernel.
• “client-server architecture within a single computer”
• Examples: Mach, Windows NT, Chorus, L4, ...

µ-kernel

user file system server

open_file request
file handle

CPSC-313 Introduction to Computer Systems Introduction

21

Windows 2000 System Structure

Benefits of µ-Kernels

• Extensibility:
– New services can be added by adding server processes.

• Flexibility:
– Services can be customized.

• Portability:
– Kernel small, with well-defined interface.

• Distributed System Support:
– Interface between users and services is message-based.

CPSC-313 Introduction to Computer Systems Introduction

22

µ-Kernels: Performance is Problem

• Request traverses user/kernel boundary twice, same for reply.
• Solutions:

– Move critical services back into the kernel (“make kernel
bigger”)

– Make kernel “smaller”

µ-kernel

user server

request

reply

Why are OSs so Slow?
(Why Aren’t Operating Systems Getting Faster As Fast As Hardware? John Ousterhout, 1989)

CPSC-313 Introduction to Computer Systems Introduction

23

Why are OSs so Slow? (2)

